

BBF-003-001616

Seat No.

B. Sc. (Sem. VI) Examination

July - 2021

Mathamatics: 601 (A)

(Graph Theory & Complex Analysis - II) (Old Course)

Faculty Code: 003

Subject Code: 001616

Subject Code : 001010		
Time : $2\frac{1}{2}$ Hours] [Total Marks : 70]		
1	Ans	wer all questions : $20 \times 1 = 20$
	(1)	Define Simple Graph.
	(2)	The degree of an isolated vertex is
	(3)	The length of C_n is
	(4)	The number of pendant vertices in a binary tree with 13 vertices is
	(5)	Define cut set.
	(6)	The number of edge disjoint Hamiltonian circuits in a complete graph K_7 is
	(7)	The edge connectivity of a tree is
	(8)	The chromatic number of a complete graph K_n is
	(9)	Define digraph.
	(10)	Define planar graph

- , , ,
- (11) Find the radius of convergence of $\sum \frac{z^n}{n-1}$
- (12) Define power series.
- (13) Write the Maclaurin series for the function $\frac{1}{z+1}$
- (14) Find the fixed point of $\frac{6z-9}{z}$

- (15) Under the mapping $w = z^2$, the line x = a in z-plane maps into a _____ in w-plane.
- (16) The function $\frac{1}{z}$ has an isolated singularity at _____
- (17) What do you mean by removable singular point?
- (18) Res $(\tan z, poles) = \underline{\hspace{1cm}}$
- (19) The singular point(s) of $\frac{z+1}{z^3(z+1)}$ is / are _____
- (20) Res $\left(\frac{e^z}{z}, 0\right) =$ _____
- 2 (A) Answer any three out of six:

 $3 \times 2 = 6$

- (1) Find the number of vertices in K_n if it has 45 edges.
- (2) Show that a complete graph has always a Hamiltonian circuit.
- (3) Prove that the number of vertices in a binary tree is always odd.
- (4) In any simple connected planar graph with f regions, n vertices and e edges $(e \ge 2)$ then show that $e \ge \frac{3}{2}f$
- (5) Draw the dual graph K_4^* of K_4 Write its n^*, e^* and f^* .
- (6) Obtain the incidence matrix of K_4 .
- (B) Answer any three out of six:

 $3 \times 3 = 9$

- (1) Prove that the number of odd degree vertices in a graph is always even.
- (2) Explain Konigsberg bridge problem.
- (3) Prove that a tree T with n vertices has n-1 edges.
- (4) Show that the number of internal vertices in a binary tree is one less than the number of pendant vertices.

- (5) Show that every tree with two or more vertices is 2-chromatic.
- (6) Prove that a graph with atleast one edge is 2-chromatic if and only if it has no odd circuits.
- (C) Answer any two out of five:

 $2 \times 5 = 10$

- (1) State and prove characterization of a disconnected graph.
- (2) Prove that a simple graph with n vertices and k components can have at most $\frac{(n-k)(n-k+1)}{2}$ edges.
- (3) Prove that a given connected graph G is an Euler graph if and only if all vertices of G are of even degree.
- (4) Prove that a connected planar graph with n vertices and e edges has e-n+2 regions.
- (5) Prove that (W_G, \oplus) is an abelian group.
- 3 (A) Answer any three out of six:

 $3 \times 2 = 6$

- (1) Show that for a Mobius mapping, there are atmost two invariant points.
- (2) Find the critical point(s) of $w = \frac{z-1}{z+1}$
- (3) Show that $e^z = e + e \sum_{n=1}^{\infty} \frac{(z-1)^n}{n!}$
- (4) Obtain the Laurent's series of $\frac{1}{z^2 3z + 2} \text{ in } 0 < |z| < 1$
- (5) Show that the function $\exp\left(\frac{1}{z}\right)$; $0 < |z| < \infty$ has an essential singularity at z = 0.
- (6) Find Res $\left(\frac{z^2}{(z-1)(z-2)(z-3)},3\right)$

(B) Answer any three out of six:

$$3 \times 3 = 9$$

- (1) State and prove Cauchy's residue theorem.
- (2) Using Cauchy Residue theorem, evaluate $\int |z|=2\frac{2z+3}{z(z-1)} dz$
- (3) Obtain the Laurent's series of $\frac{-1}{(z-1)(z-2)}$ in
 - (i) 1 < |z| < 2 (ii) $2 < |z| < \infty$
- (4) Prove that $\int_0^\infty \frac{dx}{x^2 + 1} = \frac{\pi}{2}$
- (5) Show that $\cosh(z+z^{-1}) = \sum_{-\infty}^{\infty} a_n z^n$ where $a_n = \frac{1}{2\pi} \int_0^{2\pi} \cosh(2\cos\theta) \cos n\theta \, d\theta$
- (6) Find the bilinear mapping which maps $(-1, \infty, 1)$ of z-plane into (2,1,0) of w-plane,
- (C) Answer any two out of five:

- $2 \times 5 = 10$
- (1) State and prove Taylor's series for an analytic function.
- (2) Using Cauchy Residue Theorem, evaluate $\int_0^{2\pi} \frac{d\theta}{2 + \cos \theta}$
- (3) Discuss the mapping $w = \frac{1}{z}$
- (4) Using Cauchy Residue Theorem, evaluate $\int_{|z|=3} \frac{(3z+2)^2}{z(z-1)(2z+5)} dz$
- (5) Show that the set of all bilinear mapping under the composition forms a group.